|
| 1: |
|
ap(ap(map,f),xs) |
→ ap(ap(ap(if,ap(isEmpty,xs)),f),xs) |
| 2: |
|
ap(ap(ap(if,true),f),xs) |
→ null |
| 3: |
|
ap(ap(ap(if,null),f),xs) |
→ ap(ap(cons,ap(f,ap(last,xs))),ap(ap(if2,f),xs)) |
| 4: |
|
ap(ap(if2,f),xs) |
→ ap(ap(map,f),ap(dropLast,xs)) |
| 5: |
|
ap(isEmpty,null) |
→ true |
| 6: |
|
ap(isEmpty,ap(ap(cons,x),xs)) |
→ null |
| 7: |
|
ap(last,ap(ap(cons,x),null)) |
→ x |
| 8: |
|
ap(last,ap(ap(cons,x),ap(ap(cons,y),ys))) |
→ ap(last,ap(ap(cons,y),ys)) |
| 9: |
|
ap(dropLast,ap(ap(cons,x),null)) |
→ null |
| 10: |
|
ap(dropLast,ap(ap(cons,x),ap(ap(cons,y),ys))) |
→ ap(ap(cons,x),ap(dropLast,ap(ap(cons,y),ys))) |
|
There are 16 dependency pairs:
|
| 11: |
|
AP(ap(map,f),xs) |
→ AP(ap(ap(if,ap(isEmpty,xs)),f),xs) |
| 12: |
|
AP(ap(map,f),xs) |
→ AP(ap(if,ap(isEmpty,xs)),f) |
| 13: |
|
AP(ap(map,f),xs) |
→ AP(if,ap(isEmpty,xs)) |
| 14: |
|
AP(ap(map,f),xs) |
→ AP(isEmpty,xs) |
| 15: |
|
AP(ap(ap(if,null),f),xs) |
→ AP(ap(cons,ap(f,ap(last,xs))),ap(ap(if2,f),xs)) |
| 16: |
|
AP(ap(ap(if,null),f),xs) |
→ AP(cons,ap(f,ap(last,xs))) |
| 17: |
|
AP(ap(ap(if,null),f),xs) |
→ AP(f,ap(last,xs)) |
| 18: |
|
AP(ap(ap(if,null),f),xs) |
→ AP(last,xs) |
| 19: |
|
AP(ap(ap(if,null),f),xs) |
→ AP(ap(if2,f),xs) |
| 20: |
|
AP(ap(ap(if,null),f),xs) |
→ AP(if2,f) |
| 21: |
|
AP(ap(if2,f),xs) |
→ AP(ap(map,f),ap(dropLast,xs)) |
| 22: |
|
AP(ap(if2,f),xs) |
→ AP(map,f) |
| 23: |
|
AP(ap(if2,f),xs) |
→ AP(dropLast,xs) |
| 24: |
|
AP(last,ap(ap(cons,x),ap(ap(cons,y),ys))) |
→ AP(last,ap(ap(cons,y),ys)) |
| 25: |
|
AP(dropLast,ap(ap(cons,x),ap(ap(cons,y),ys))) |
→ AP(ap(cons,x),ap(dropLast,ap(ap(cons,y),ys))) |
| 26: |
|
AP(dropLast,ap(ap(cons,x),ap(ap(cons,y),ys))) |
→ AP(dropLast,ap(ap(cons,y),ys)) |
|
The approximated dependency graph contains 3 SCCs:
{24},
{26}
and {11,12,15,17,19,21}.